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Abstract

Modern optimal control methods are applied to a lumped mass

model of a tetrahedron. The four unit masses of this model are

interconnected by isotropic massless rods which are capable of

Saxial deformation only (no bending)., NASTRAN is employed in

generating a normal modes approximation, while providing the mode

shapes and frequencies for the resultant twelve modes. System

control is achieved via collocated sensor/actuator pairs at three

of the four masses. Pointing accuracy at the fourth mass is used

as a figure of merit in determining the effectiveness of the con-

troller. A prescribed line of sight response is established as a

goal for successful control.

-The controller is developed using linear optimal techniques

which produce feedback gains proportional to the state. The

state is represented as modal amplitudes and velocities as deter-

mined by the sensors. The four higher frequency modes are trun-

cated to signify a simplifying order reduction step. State esti-

mation is incorporated due to the non-availability of modal ampli-

tudes and velocities. The feedback gains are established via

steady state optimal regulator theory. Control is applied with

point force actuators. System response is examined in light of

the effects of observation spillover and control spillover onto

a specified number of suppressed modes. * A comparison is ob-

tained by complete elimination of the spillover effect. Using

singular value decomposition, the spillover is first eliminated

through judicious reorientation of one sensor/actuator pair. An

attempt to control two modes and suppress six demonstrates the

vi



advantages of spillover elimination, but fails to satisfy the

specified response criteria../- ....

Sensors are added to the model at the fourth mass and ob-

servation spillover is again eliminated. Line of sight response

was improved over the case without sensor additions, but was

still inadequate. The truncated modes were added to the system

with little degradation, verifying the acceptability of this

truncation.
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MODERN OPTIMAL CONTROL METHODS

APPLIED IN ACTIVE CONTROL OF A

TETRAHEDRON

Introduction

The potential for larger and more complex space structures

has grown concurrent with the approach of an active, operable

space transportation program. Present system concepts involve

the deployment of earth resource satellites and micro-wave power

relay systems with dimensions extending to hundreds and eventually

thousands of meters in diameter. A key design criteria for these

immense, mechanically flexible systems is the requirement to de-

velop advanced methods for control. More precisely, a principle

issue in the control of a system with an infinite number of vibra-

tional modes is the generation of a method for stabilizing these

huge structures with dimensionally realistic controllers. This

requirement is basically a function of on-board computer, sensor,

and force actuator limitations, along with incumbent modelling

inaccuracies. Of the numerous methods now being examined as

potential solutions to this control problem, modern state space

control theory has received general acceptance as the most via-

ble technique. Applying classical control methods to these large

structures is seen as computationally improbable; at the same

time, modern state space theory, incorporating a finite element

system representation, can be successfully applied to a very wide

1i



class of flexible structures. This theory is most commonly

applied using an optimal time-invariant linear regulator as a

means of actively controlling vibration.

Due to the inherent hardware limitations briefly highlighted,

active control must be restricted to a relatively small number

of critical modes. Therefore, in a necessary truncation step,

some higher frequency modes remain unmodelled. Natural damping

in the system is assumed to preclude the possiblity of instabil-
ity resulting from these modes. Of the remaining modes (still a

potentially large number) it is further desirable to treat only

a critical few (not necessarily those with the lowest frequency),

while suppressing the rest.

However, the sensor outputs are contaminated by the remaining

"suppressed" modes, and the eventual feedback control also excites

these modes. Balas (Ref 1) labels these effects "observation

spillover" and "control spillover" respectively. He shows that

either or both of these effects can lead to overall instabilities;

the suppressed modes must, as a result, be a design consideration.

Balas describes a technique with which to develop a feedback con-

troller using state variable methods. The key to this approach is

the use of narrow bandpass filters which effectively comb out

the suppressed mode frequencies to eliminate observation spillover.

Another method for developing an appropriate feedback con-

troller was first presented by Sesak (Ref 2), and later expanded

by Coradetti (Ref 3). This approach involves the use of a so-

called "singular perturbation" technique in analyzing and elim-

inating the spillover-generated instabilities. Coradetti concludes

2



that employing this "singular perturbation" method in a limiting

sense, with an infinite penalty applied against any spillover, is

equivalent to finding a transformation matrix. This transforma-

tion matrix, when applied to feedback gains, effectively elimi-

nates any spillover terms. It should be noted that, even if

t spillover does not render the system unstable, applying the trans-

formation method may still improve performance. Additionally,

while no method for actually automating optimal sensor and actua-

tor placement is defined, some valuable insight into the nature

of this task is precipitated. This is accomplished utilizing

what have now become well known state space control techniques

in conjunction with singular value decomposition of the rectan-

gular matrices of modal amplitudes (Ref 4).

The principle function of this thesis is to provide appli-

cation of the Coradetti approach to a three dimensional, lumped

mass model of a tetrahedron. A line of sight at one of the masses

(simulating pointing accuracy) will be used as a figure of merit

with which to judge the general effectiveness of this method.

This thesis will serve as a direct extension of the work done by

Sanborn (Ref 5), in which the stability of a cantilever beam in

bending vibration was studied. Specifically, this thesis will

examine model response as affected by the number and orientation

of position sensors and force actuators. The elimination of

control sliliover and observation spillover will be obtained using

singular perturbation and singular value decomposition techniques.

A representation of a tetrahedron has been obtained via

the normal modes approximation package found in the NASTRAN finite

3



element computer program. The natural frequencies and eigen-

values/eigenvectors associated with each mode were provided by a

study done by the Charles Stark Draper Laboratory. For appli-

cation of the control method, position sensors are used to eval-

uate modal amplitudes, while point force actuators accomplish

the state variable feedback control. Singular value decomposi-

tion of the matrices of modal amplitudes at sensor locations

and actuator locations is used to produce a transformation matrix

by which spillover terms are eliminated. A model with higher

order modes truncated (un-modelled) is used to design the control-

ler. The effectiveness of this controller against all modes is

examined. Finally, a study of improved performance with added

sensors is generated.

4
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System Model

General Configuration

Of the many design criteria which must be considered for

the large flexible spacecraft currently being advanced, pointing

taccuracy looms as the most critical. As a function of system

size and operating frequency, pointing accuracies in the range

of one tenth the half-power signal beam width will be required.

The ability to meet these stringent requirements becomes a direct

function of the isotropic stiffness of the system. One of the

space erectable or assembly concepts that has the promise of

supplying this needed stiffness in larger systems is the geo-

detic truss (Ref 6). Based on current Space Shuttle cargo

capacities, whole units of up to 91.4 meters can be packaged for

deployment. For very large systems, these units are assembled

as an amalgamation of tetrahedrons-- the basic unit of geodetic

truss. By changing the size of the tetrahedrons, a large array

of varying stiffness antenna substructures can be developed.

For this reason, a tetrahedron is seen as an important model

against which to apply proposed control techniques.

The finite element, lumped mass model to be used herein

is depicted in Fig 1 and Fig 2. This model is seen to consist

of ten nodes. The twelve interconnecting truss members are

assumed to be massless and are capable of resisting or exerting

axial force only (no-bending). Masses are of one unit each,

and are located at grid points one through four. Each mass

is capable of perturbation with three degrees of freedom.

5



I /

/

1 10

6/ V

Yf//
7 3 9i

/

/ I

/

x

Figure 1. Cross Sectional View of the System Model

6



z

24 3

56 9 107//

10 -9

9 8

6 7
Figure 2. View of System Model Down Y and X axes

7



The remaining grid points (five through ten) serve to esta-

blish a fixed line of sight for an initial set of six col-

located sensor/actuator pairs. Node coordinates for the model

are listed as Table I. For this analysis, position sensors

are employed, but velocity sensors are not. The effects of

this are detailed in the linear system model to be developed

in this section.

An eigenvalue analysis of this nominal model has been pro-

vided via the NASTRAN computer program. Key results of this

analysis are presented as Table II. The eigenvectors associated

with these eigenvalues can be found in Appendix A. Table III

provides the initial conditions required for a time history exam-

ination of system stability. This stability will be assessed

using, as a figure of merit, the pointing accuracy along the Z

axis at nce1 1. Since any perturbation directly along the Z axis

has no impact on pointing accuracy, the line of sight in the

X and Y directions only will be examined.

Table I.

Node Coordinates

Node X Y Z

1 0.0 0.0 10.165
2 -5.0 -2.887 2.0
3 5.0 -2.887 2.0
4 0.0 5.7735 2.0
5 -6.0 -1.1547 0.0
6 -4.0 -4.6188 0.0
7 4.0 -4.6188 0.0
8 6.0 -1.1547 0.0
9 2.0 5.7735 0.0

10 -2.0 5.7735 0.0

8



Table II

Key Results of NASTRAN Eigenvalue Analysis

Generalized Generalized
Mode Mass Stiffness n(rad)/sec (rad2)/secZ

1 1.OE+00 1.37E+00 1.17E+00 1.37E+00

2 1.OE+00 2.15E+00 1.47E+00 2.15E+00

3 1.0E+00 8.79E+00 2.96E+00 8.79E+00

4 l.OE+00 1.26E+01 3.56E+00 1.26E+01

5 1.OE+00 1.48E+01 3.85E+00 1.48E+01

6 1.OE+00 2.65E+01 5.15E+00 2.65E+01

7 1.OE+00 3.22E+01 5.67E+00 3.22E+01

8 1.OE+00 3.26E+01 5.71E+00 3.26E+01

9 1.OE+00 7.99E+01 8.93E+00 7.99E+01

10 1.0E+00 1.06E+02 1.03E+01 1.06E+02

11 1.0E+00 1.19E+02 1.09E+01 1.19E+02

12 1.OE+00 1.95E+02 1.40E+01 1.95E+02

Table III

Initial Conditions for Time History Response

Mode Displacement (n) Velocity (n)

1 -.001 -.003

2 .006 .01

3 .001 .03
4 -. 009 -. 02
5 .008 .02
6 -.001 -.02
7 -.002 -.003
8 .002 .004
9 .0 .0

10 .0 .0

11 .0 .0

12 .0 .0

9



Equations Of Motion

Since there are no exact equations of motion for a con-

tinous model of a tetrahedron, we are restricted to the discre-

tized representation provided by the finite element routines.

The output function or motion of the model can be expressed as:

n
Y(xjt) = E i(xj)Ui(t) (1)

where the xi(xj) terms are the mode shapes, and the Ui(t) terms

are the mode amplitudes, with n being the number of modes ex-

hibited by the model. For an exact solution to a continuous

system, the number of lumped masses and the number of modes (n)

would have to reach infinity. Practically speaking, the total

system displacement Y(xj,t), can be reasonably represented by a

truncation of Eq (1) such that n is considerably less than infin-

ity. This truncation will, of course, lead to model reduction

errors; but, up to a certain point these errors are relatively

insignificant.

NASTRAN analyzes the model in Fig 1. and generates both

the normal mode shapes and the corresponding natural frequencies

(n) Since this is a lumped mass model consisting of four masses,

with each mass having three degrees of freedom, there are a total

of twelve normal modes.

Linear System Model

As stated, the number of modes (n) for a complex model may

be very large. The practical limitations for an on-board com-

puter and the associated sensor and actuator hardware make it

10----l w



necessary to develop a controller that is concerned with a

minimum number of modes, while still satisfying what may be very

stringent requirements on the performance (here, line of sight

accuracy). As the control theory outlined in this paper is elab-

orated, a possible method for determining which modes require

control will be discussed. At this point, assuming this

determination is possible, the system output of Eq (1) can be

segregated into 3 partitions; the controlled, the suppressed,

and the unmodelled:

Y(xjt) = Yc(Xjt) + Y (xjt) + Y (x. t) (2)
c jsj um j,

Y (Xjt) is that portion of the output generated through
um

the highest frequency modes. These modes are unmodelled, with

the hope that the bandwidths of the sensors and actuators employ-

ed will be less that the natural frequencies of the modes. Fur-

thermore, since these modes have such high frequencies, they may

be quite difficult to excite. Hence,any controller designed

for this system can ignore these modes. These modes are sub-

sequently called the residual modes.

Ys (xJ t) is that portion of the output generated by modes

of less high frequency, which, none-the-less have a minimal

direct impact on system performance. Due to their indirect

and potentially destabilizing impact (spillover), they must

be included in the design process. These modes are subsequently

called the suppressed modes.

Y c(xt) is that portion ot the output which we must directly

control to insure satisfactory performance. These critical modes

i1



will subsequently be called the controlled modes.

Equation (2) can now be written in segregated form as:

c
Y c(Xt) = E 4i(xj)Ui(t) (3)

i=l

c+s
Y s(Xjt) = E i (x.)Ui (t) (4)

Y um(xjt) = Es qi(xj)Ui(t) (5)
urn ~ i=c+s+1 j3

where c is the number of controlled modes, s is the number of

suppressed modes, and n is the total number of modes in the

model. Again, for this system model, n is twelve. For the pur-

pose of future analysis, the case of truncating the highest fre-

quency modes will be simulated by suggesting that the last four

(highest natural frequency) modes generated by NASTRAN fall into

this category. The design process for the overall controller

will be based on knowledge of only the first eight modes. The

eventual controller will be applied to a system incorporating

all twelve modes in an attempt to verify the acceptability of

this truncation. The modelling can thus be seen as a process of

two truncations in the effort to reduce control hardware and -

software requirements. First, the model is truncated to a work-

able number of modes by designing a controller that is blind to

the higher frequency modes. Second, the model is limited to

controlling only the critical modes where the figure of merit

is concerned.

NASTRAN has taken the prescribed system with the masses

and gridpoints provided, and modelled the structure with a set

12



of second order differential equations. These are the basic

spring mass differential equations such that * + W n = f.

The associated first order eigenproblem is solved (Ref 7) so

as to provide the decoupled normal modes. This allows assem-

bling a state space representation of the system:

X(t) = AX(t) + Bu(t) (6)

where

X(n x 1) is the state vector

u(m x 1) is the control input vector

A(n x n) is the plant matrix

B(n x m) is the input matrix

By letting the state X be the partitioned matrix of mode ampli-

tudes(U .(t) and their rates of change (Ui(t)) the state variables

become:

Xt(t) U ) 1t T i = 1,2,...,n (7)
i,

Further separating the states into Xc' formed by the

controlled amplitudes and rates; and Xs formed by the suppressed

amplitudes and rates renders:

X(t) u {i (t) U i(t)J T = 1,2,.. ,c (8)

s(t) = Uj(t) j = c+1,..C+S (9)

Substituting these states into Eq (6), the system is now modelled

by:

Xc (t) = AcXc (t) + BsU(t) (10)

13
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The system parameter matrices are defined as:

0

o . I

A ....... (13)

5

B = 14) i
C

0

A F~ (15)

The W. and W. terms are the diagonal elements of square
1 3

matrices which represent the natural frequencies of the con-

trolled and suppressed modes respectively, while the iand

. terms represent the damping ratios for those modes i = 1,2,..c

and j = c+l,c+2,...c+s. The c and s terms are diagonal matrices

of these same natural frequencies squared as determined by

NASTRAN. Therefore, as an example, if two modes for a given

system were to be controlled, one would have:

B 144)

cU



0 0 1 0

0 0 0 1
A = (16)

c _W2 0 -2w 0 0
1 1 1

0 -W 2  0 -2E
2 22

Furthermore, the B and B matrices awthe control input
-C -S

matrices, and are those matrices whose columns are the mode

shapes i(x),j i(x)) evaluated at each actuator location such

that:

(xe (•• (x,

B ¢c(x 1 ) 2 (x 2 ) . . .c(xa)
-C

(x 1) c (x 2 ).. c (x a)i

Oc+l( 1 ¢c+ilx2 ) . . . c+l(Xa )

B c+2 (x 1 ) c+ 2 (x 2) c+2 4Xa) (18)

c+s(xl 1)  Oc+s (x2)" . . ". c+s (xa)

where a is the total number of actuators employed.

Additionally, state space methods render the sensor output

as:

Y(t) =CcXc (t) + CsR S (t) (19)

with

C = c 0] (20)

15



= c " 0 (21)

where Cc and Cs are matrices whose "rows" are the mode shapes of

the controlled and the suppressed modes respectively evaluated

at the prescribed sensor locations such that:

l(x 1 ) 4 2 (x()x

1 (x2 ) 4 2 (x 2) " " 2)
c 

(22)

4l(xb) 4' 2(xb) . . . Oc (xb)

cl(Xl) c(Xl - • c+s(Xl)

= c+l (x2 ) Oc+2(x2 . . .c+s (x 2)C
s. (23)

Oc+l (xb) c+2(Xb) . . c+s(xb)

The null portion of the C and C matrices represent

the velocities at the prescribed sensor locations, which are

zero since only displacement sensors are being employed. Again,

b is the total number of sensors used. It should be clear that

if collocated sensors and actuators are used, with a = b, then

TB = C (24)
~C ~C

BT = C 25)
~S -S

As these model elements are created, it becomes clear that

this methodology is independent of structural complexity, except

for the overall matrix dimensions. Therefore, the applicability

of the subsequent analysis can be seen to be far reaching.

16



As a starting point toward developing a state variable

feedback controller, Fig 3 below represents the uncontrolled

system that has been here-to-fore described.

u

Figure 3. Simple Open Loop Plant

In order to eventually form an active control, u(t), using

state variable (modern control) feedback techniques, complete

knowledge of the actual state at time t must be known. However,

the only measure of the state X is the measurement vector Y pro-

vided by the sensors. To take those observations and create the

corresponding state, it will be necessary to develop a state esti-

mator which will accept those sensor observations and estimate

X as X.

Modal Control

As Balas explains, the state estimator used in developing

active feedback control can either be a Kalman Filter when it

is found that the signal-to-noise ratios are relatively small,

or a Luenberger observer, or a least squares technique, should

the signal to noise ratio be high enough to treat the system

17



as deterministic. Regardless of which is used, the estimator

will have the form:

XN(t) = ANXN + BNu(t) + KN[Y(t) - Y(t)] (26)

and X N (0) = 0 (27)

Y(t) = CNXN (28)

where N is replaced in our system by either c or s'.

Observation of Eq (26) shows that the estimator equation

is comprised of the internal model of the state as in Eqs (10)

and (11), plus a correction term which is made up of the error

between the measured output (Y(t)) and the computed output

(i(t)). Equation (27) establishes an initial condition for the

state out of convenience. The error in this state estimation

process is given as:

eN(t) = XN(t) - XN(t) (29)

The equations for this estimator error, formed by combining

Eqs (26), (27), and (28) with Eqs (10), (11), and (19) becomes:

e = )e (t) + KCX (t) (30)

eN~t (. NCN N~ NRR

For the prescribed system, this becomes:

ec(t) = (Ac - KC c)e c (t) + KcCs s (t) (31)

Ignoring the suppressed modes, this finally becomes:

ec (t) = (Ac - KcCc)e c (t) (32)

18



The observer gain matrix, K, must be formulated so as to in-

sure that the estimator error defined in Eq (32) decays expon-

entially at a rate more rapid than the system dynamics. The

decay rate is determined by the eigenvalues of (Ac-KCc). Since

the eigenvalues of a matrix are equal to the eigenvalues of

the transpose of that matrix, Eq (32) can be rewritten as

follows:

W(t) = A Tw(t) - C g(t) (33)
c c

g(t) = K w(t) (34)

The observer gain matrix, K, can now be calculated via

steady state optimal regulator theory. This is equivalent to

minimizing the quadratic regulator performance index J, where:

_T
J=0 (obW + gRog)dt (35)

The known optimal solution to this minimization problem is:

KT =-R obCc (36)

where P is the solution to the steady state algebraic matrix

Ricatti Equation:

PAc + AcP - PCcTRoblCcP + Qob = 0 (37)

where Qob is an n x n positive semidefinite state

weighting matrix

Rob is an m x m positive definite control

weighting matrix

By treating only the controlled modes in the generation

19
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of the optimal state feedback gain matrix, we have signifi-

cantly reduced the order of the controller. This was accom-

plished, as previously stated to avoid practical problems

encountered in deriving a global controller. The reduced or-

der controller will subsequently be designed to control a sub-

set of all of the system states, while simultaneously avoiding

any excitation of the remaining states. Coradetti clarifies

the advantages of this process when he points out that the

computational burden of solving the Ricatti Equation increases

roughly as the cube of the order of the equation. There may

simply not be sufficient on-board computer memory available.

Also, the state estimator process increases with system order a

at a greater than linear rate. Finally, with non-interacting

controller there will be greater fault tolerance to actuator

failures.

In precisely the same fashion, the control feedback gain

matrix, G, can be formulated. Now, again using steady state

optimal regulator theory, the performance index to be minimized

is:

J = (XcTFX + fTRf)dr (38)
c c

where F is an n x n positive semidefinite state

weighting matrix

R is an m x m positive definite control

weighting matrix

The optimal solution to this minimization problem is

G= R (39
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where S is the solution to the matrix Ricatti Equation:

SA + A TS - SB R- B TS + F = 0 (40)C C C C

Implementing the results of Eqs (36) and (39) with the

system Eqs (10) and (11), as well as Eq (32) renders:

X (t) = (Ac + B G)X (t) + B Ge(t) (41)

X (t) = AsX (t) + B GX (t) + B Ge(t) (42)

By taking the step of defining a system state vector incor-

porating the controlled states, the suppressed states, and

the estimator error, such that:

[ T  "T XTt T
Z(t) )"(t) e ()) T (43)

a closed loop system model, containing the effects of the

suppressed and controlled modes, and utilizing state variable

feedback as the control mechanism can be presented as:

A+BG" BG :0
c c *c

Z(t)= 0 A -KC c KC Z(t) (44)

BsG : BG : A

Recalling that the observation and control feedback gain

matrices (K and G) were designed to operate on the controlled

modes, the terms KCs and B sG create potential problems. These

in effect, are known as observation spillover and control spill-

over, respectively. Although all of the diagonal matrices of
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Eq (44) are designed to have purely negative real parts for

all eigenvalues, it is obvious that the KCs and B sG terms can

cause overall system instabilities.

Block Diagram Representation for the Linear Model

In a parallel section of his paper, Sanborn generates the

block diagrams representing this new system model in two seper-

ate forms. Since the equations now governing the model are:

X = AX + Bu State Equation (45)

Y = CX Output Equation (46)

u = GX Control Equation (47)

XC AcX + BcU + K(Y -Y) Estimator Equation (48)

The system can be presented as Fig 4. This diagram can

be manipulated per Johnson (Ref 8) to generate a modified block

diagram form as shown in Fig 5.

From Fig 5 the closed loop transfer function for the con-

troller is seen to be:

f -1
y(s) = K(SI - A -B cG + KC C ) G (49)y cc c

From this transfer function, we know that if any of the

eigenvalues of (Ac + B cG - KC c ) are positive, then the controller

is unstable. Since the techniques for generating both the ob-

servation and control gain matrices were employed independently,

the possibility that an unstable controller is formed exists.

Although the controller, when coupled with the plant, would
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produce a stable system, the potentially disastrous effects of

an intermittent decoupling must be emphasized. An examination

of the eigenvalues of (Ac + B cG - KC ) will, therefore, be

included in the analysis.

4.
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Transformation Matrix Control

It has been shown in what has preceded that, due to obser-

vation spillover and control spillover, the system represented

by Eq (44) could be made unstable. In an attempt to alleviate

this problem we will employ a control technique which attempts

to eliminate spillover. This suggests driving the off-diagonal

matrices of Eq (44) to zero, while retaining active feedback

control of the overall system. An examination of the system

equation leads one to realize that, if either B G or KC are
s s

zero, the system eigenvalues revert to the eigenvalues falling

on the diagonal. The nature of these diagonal matrices is

such that negative eigenvalues (and, hence, system stability)

are guaranteed. Obviously, one solution to B G = 0 is G = 0.

However, this solution also renders B G = 0, and control is for-C

gone. That being the case, the transformation method is dir-

ected at constraining the feedback gain matrices such that:

B G = 0 (50)s

KC = 0 (51)s

while, at the same time:

B G# 0 (52)c

KC # 0 (53)c

To develop this method, we will first look at the condi-

tions required to satisfy Eqs (50) and (52), namely the elimina-

tion of control spillover. At the core of this method will be
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an attempt to find some transformation matrix, T, such that

subsequent control vector, U(t), required for Eq (6) will be:

U(t) = Tz(t) (54)

where z(t) is now the new control input and with constraint that:

BsT 0 (55)

while: B T #0 (56)
c

One method with which to obtain this transformation matrix

employs a technique known as Singular Value Decomposition (Ref 9).

Using SVD allows reformulation of the s x m B matrix as:s

B = WVT (57)

where W is an s x s orthogonal matrix of left singular

vectors

V is an m x m orthogonal matrix of right singular

vectors

and

S 0

= . . . . . (58)

0 0

_.s x m

Such that S is a q x q diagonal matrix of the singular values of

B , or: (continued)
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2

0 0
S

LO q

Singular values are always greater than or equal to zero,

and the total number of non-zero singular values is equal to the

rank of the decomposed matrix. As long as B is full rank withs

dimensions of s x m, then q is the minimum value of the pair

(s,m). By arbitrarily letting r be the difference between q and

m, or: K

q + r = s (59)

The W can be partitioned such that:

W = [q W (60)
1W ris x s

having:
W as an s x q matrix
q

W as an s x r matrixr

In a similar fashion, we can choose p as the difference between

q and n such that:

q + p =m (61)

We can now partition the right singular vector matrix, V, as:

V = V (62)
q jm x m

having:
V as an m x q matrixq

Vp as an m x p matrix
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By defining V as our transformation matrix, T, we find
p

some highly desirable results with respect to Eqs (55) and (56),

namely:

BsT = BsV = SV TV (63)

However, since V is an orthogonal matrix:

V TV = 0 (64)
q p

Hence:

B T = 0 (65)s

Coordinating this expression for the transformation matrix with

the model so far established, it should first be noted that the

dimensions of B are directly the result of both the number of
5

modes to be supressed (s) and the number of actuators employed

(m). If the rank of the matrix B is equal to the number ofs

actuators available, then q = m. By Eq (61) it is seen that this

forces p to be zero. It follows that V = T = 0, and we areP

restricted to the trivial solution. Recalling the previous com-

mittment for the transformation method, this would fail by

allowing B T = 0. It is clear that for the transformation methodc

to be carried to an exact solution, special conditions in-

cluding q < m must be met. Restated the rank of Bs must be5|
less than the number of actuators. It should, however; be

noted that if you are restricted to a fixed number of pre-

oriented actuators, performance is enhanced by using the sin-

gular vector associated with the least singular values (even
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though B ST 0). In any case, where q = m, an order reduction

scheme is required to get an exact non-trivial solution to

B ST =0. As a verifying set of examples, let q be the rank of

B8, and let that matrix have dimensions s x m with s = 4 and

m =3. If Bsis full rank, q = 3. Therefore by Eq (61), p = 0.

However, if we can reduce the rank of B to q =2, then p =1
S

and V pis non-zero. As will be demonstrated, this rank defi-

ciency is obtained either through judicious orientation of the

actuators (driving a non-zero singular value to zero) or through

addition of actuators and increasing m. The minimum number of

actuators that can be used where the former method is employed

is two, since a matrix of rank 1 cannot be made rank deficient.

Regardless of how an appropriate non-zero T is formed, we

will how have the resultant solution vector in Eq (54), where:

z =-G tX c(66)

adRt A T RT (67)

such that Rt is a p x p positive definite matrix, and:

Bt BT (68)
c

with A B completely controllable.

as followed in Section III is employed. The control gain matrix

in now defined by:

-_1 BT P(9Gt Rt Bt c (9
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and PcAc + Ac TPc + PcBtR tBtT Pc + Qc =0 (70)

where:

Gt is a p x m reduced degree of freedom critical state

feedback gain matrix

P is a m x m positive definite solution to the reduced
c

order Ricatti Equation

The gain matrix is therefore finally transformed by:

G = TG t  (71)

which will produce a new m dimensional control with zero control

spillover.

A parallel technique is employed to eliminate the KC

observation spillover term. Here, the number of sensors must

exceed the number of suppressed modes, or Cs must be made rank

deficient through sensor re-orientation. The specific methodo-

logy for reducing the order of the optimal regulator will be

described as part of the computer model, and in the investigation

which follows.
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Computer Model

Appendix A represents a computer listing for one run of the

main program. This particular run applies the transformation

method to an eight mode nominal model such that the control spill-

over (BsG) is driven to zero. Although the program is seen to be

quite lengthy, the comment cards which have been included for

clarity suggest the overall straightforwardness of the approach.

As a first step, the parameter matrices (A, B, C) are built.

The A matrix portion of the program reads in the natural fre-

quencies from the NASTRAN data, and uses these frequencies and

a prescribed damping ratio (0.005) to fill this parameter matrix

appropriately. The B and C matrices are formed as a matrix pro-

duct of mode shapes and actuator or sensor locations. That is,

B is formulated as:

T
B= D (72)

where

'is the matrix whose columns are the eigenvectors

for each mode supplied by NASTRAN (mode shapes)

D is a direction cosine matrix for the locations

and orientations of the prescribed actuators.

Since the sensors and actuators are collocated, it then becomes

clear that:

T T
C =B = D' (73)

Next, by supplying as an input value the number of modes to be

controlled, the program takes the A, B, and C matrices and
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generates their controlled and suppressed counterparts (i.e. Ac,

A ,Bc ...). With these matrices formed, along with their trans-
sc

poses, the steady state feedback gain matrices (K and G) are

established. Reviewing this process as described in Section III,

it is seen that one step involves solution of the steady state

matrix Ricatti Equation. This solution is obtained via highly

specialized computer subroutines created by Kleinman (Ref 9).

With these gain matrices, the total system equation seen as Eq

(44) is formed. An eigenvalue analysis using subroutine EIGRF

from the International Mathmatical and Statistical Library

(IMSL) is completed against the controller (A + B cG) the ob-

server (A - KCc), and the entire system. This allows for a

stability analysis based on these eigenvalues.

Next, a time history response (20 seconds) is performed on

the line of sight in both the x and the y directions at grid point

1. This is accomplished in two steps. First, the CC6600 sub-

program library of the Air Force Institute of Technology is

implemented such that program ODE (Ref 10) can be used to inte-

grate the state equation:

X = AX + Bu (74)

to establish x(t) for t = 0.0, 0.1, 0.2,...20.0. Then, using

the mode shapes and, primarily their x and y components at grid

point 1, the line of sight magnitudes are formulated such that:

n
X (t) = tx (t) (75)
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and nXa(t) = E x(t) (76)

2 2ixi

with

Xl(t) being the line of sight in the x direction

X2 (t) being the line of sight in the y direction

This set of results provides a baseline for comparison of

future analyses. Once these plots are completed, a singular

value decomposition is performed on B as the first step in thes

transformation method. The actuator corresponding to grid

point 7 is rotated incrementally until the least singular value

of B becomes nearly zero. In effect, this reduces the ranks

of Bs . With this new orientation, a new control gain matrix

(G) is formed using the methods described in Section III.

Also, new B and C matrices are created to account for the re-

oriented sensor/actuator pair.

With these new values, the program returns to the eigen-

values obtained previously. The fact that the system eigenvalues

are those of the diagonal members is born out. New plots are

then generated so as to compare the time history responses with

and without control spillover. This same approach is followed

in driving the observation spillover (KC ) to zero. This set

of runs demonstrates the improvement available without adding

hardware.

Finally, two sensors are added at grid point one to examine

the effectiveness of adding some fairly simple hardware (as

opposed to adding actuators). These two sensors are given an
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orientation typical to those sensors already prescribed. This

run is repeated against a twelve mode model to verify the legit-

imacy of the first truncation of higher modes. It should be

noted that the selection of two additional sensors at grid point

one was arbitrary. Any number of additional sensors could be

added at any location for this final study.

I
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Investigation

Outline

A systematic approach toward assessing the effectiveness

of the transformation method was initiated. As a first case,

9 the system eigenvalues and line of sight time history responses

were examined for models with and without control spillover

(BsG). The transformation technique was only applied to the

control gain (G). The sensor/actuator pairs remained collocated,

while one of these pairs was rotated to produce an additional

zero singular value to Bs . An angular orientation was obtained
5

which produced a rank reduction in the suppressed control matrix.

The weighting function of the controlled states, X , was set atc

the identity matrix. Upon successful completion of this first

case, the process was repeated with increasingly higher control

weighting. Then, this set of runs was compared to the case

of eliminating observation spillover (KC s), rather than control

spillover. The purpose of this alteration to the main program

is twofold. First, it would demonstrate that the total system

matrix (Eq (44)) is block diagonalized successfully by forcing

either of the spillover terms to zero. Second, it facilitates

the final area of investigation; namely the potential benefits

of sensor additions. The addition of sensors (rather than

actuators) within the prescribed model was chosen out of practi-

cality. From a "hardware" viewpoint, the addition of sensors is

seen to be considerably more realistic than the addition of

point force actuators.
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For all cases examined, the overall attempt is to reduce

the line of sight error in the x and y directions at grid point

one to less than 0.0004 radians and less than 0.00025 radians

respectively in 20 seconds.

Elimination of Control Spillover

In an attempt to further clarify the direction of this

analysis recall from Sections II and III that the control gain

matrices are determined using steady state optimal regulator

theory, which involves minimization of related quadratic perfor-

mance indices. These performance indices for the model with and

without spillover are:

i= kw,- TF- +J f(J + uTRu) dt0

J = !W(XcTFX, + URtU)dt0

respectively.

An inspection of these two indices demonstrates the role of

the control weighting matrix, F, as an amplifier of the resul-

tant gains applied to the controlled states. All cases run

attempt to control the first two modes and suppress the remain-

ing six. An attempt to modify, and ultimately improve perform-

ance is tied to increasing the magnitude of this weighting

matrix. It is known from the previously developed theory that

increasing the magnitude of the control gain (here G) has the

coincident negative effect of increasing control spillover. It

is with this awareness that the first study is accomplished.

This study involves generating the system matrix and examining
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the eigenvalues and associated line of sight time history re-

sponse. Once these data are generated, the transformation

technique of Section III is applied to force B G to zero.

Table 4 is a presentation of data pertinent to the first

case in which F is set at the identity matrix. Both sets of

system eigenvalues exhibit stability. Additionally, eigen-

values of the entire system are the same as the eigenvalues

of the matrices on the diagonal, verifying that control spill-

over has been eliminated. It should also be noted that the

transformation method has generated a controller (A + B G - KC)c

that is unstable, but which, none-the-less, produces a stable

system. Figures 6 through 9 represent the time history responses

for the x line of sight and y line of sight errors. Although a

precise bandwidth on the error is difficult to establish, it is

obvious that the prescribed limits specified in the outline

portion of this section have not been satisfied.

The next step then involves multiplying the F matrix by

scalar powers of ten (i.e. 1, 10, 100,...). Until F reaches

1000[I], there is no significant improvement in the line of

sight error for either the case with or without control spill-

over. However, at the F 1000Il], significant changes in the sys-

tem response become evident. Table 5 is a presentation of the

associated eigenvalues for this case. Clearly, the spillover

terms have now forced the system (without transformation of the

control gain) unstable. The eigenvalues after gain transforma-

tion, however, still exhibit stability. This demonstrates the

certain advantages of using this method. Figures 10 and 11
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depict line of sight errors without transformation and demon-

strates the unstable response indicated by the associated eigen-

values. The time histories of Figures 12 and 13 present an x

line of sight error for the system with B G = 0 within ans

approximate bandwidth of ±.0013, and a y line of sight error

of ±.0008. As the control gain weighting function is increasing

there is no significant improvement of response. The trend of

these data suggests that the criteria for pointing accuracy

cannot be met with the prescribed number of sensors and actua-

tors (6 each). It is clear, for the reasons highlighted, that

sensors will have to be added.
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Table IV

Elimination of Control Spillover; F 1.01,1

System Eigenvalues

Before After
Transformation (B sG960) Transformation (BG=0)

-.02822 ± 5.70935i -S -.02855 ± 5.71073i

-.02838 ± 5.67583i -S -.02838 ± 5.67583i

-.02553 ± 5.14848i -S -.02575 ± 5.14935i

-.01918 ± 3.84804i -S -.01924 ± 3.84834i

-.01778 ± 3.55770i -5 -.01778 ± 3.55770i

-.01467 ± 2.96372i -S -.01482 ± 2.96458i

-.08663 ± 1.47902i -C -.07712 ± 1.46602i

-.06679 ± 1.18915i -C -.00751 ± 1.17064i

-.06279 ± 1.457031 -0 -.08627 ± 1.46583i

-.03768 t 1.16069i -0 -.04420 ± 1.17052i

Eigenvalues of A. + B Gj

.07457 ± 1.466071 -C- -.07712 ± 1.46602i

.05199 ± 1.17046i -C- -.00751 ± 1.17064i

Eigenvalues of A -KC

.07457 t 1.46607i -0- -.08627 ± 1.46583i

±.59 1.170461 -0- -.04420 ± 1.170521

Eigenvalues of A c+ B cG -KC

.00733 ± 1.46222i .00194 ± 1.46119i

.055±1.16818i .03072 ± 1.17082i

S = Suppressed Mode Eigenvalues

O = Observer Mode Eigenvalues
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Table V

Elimination of Control Spillover; F = i000.0[I]

System Eigenvalues

Before After
Transformation (B sG#0) Transformation (B sG=0)

* .09178 ± 5.73850i -S- -.02855 ± 5.71073i

-.02838 ± 5.67583i -S- -.02838 ± 5.67583i

.03098 ± 5.17892i -S- -.02575 ± 5.14935i

-.00835 ± 3.85687i -S- -.01924 ± 3.84834i

-.01764 ± 3.55783i -S- -.01778 ± 3.55770i

.01328 ± 2.98115i -S- -.01482 ± 2.96458i

-.300048 + 0i -C- -3.11793 + 0i

-1.15711 + Qi -C- -1.46147 + 0i

-1.66482 ± .80887i -C- -.02000 ± 1.17188i

-.07067 ± 1.46398i -0- -.08627 ± 1.46583i

-.04480 ± 1.16631i -0- -.04420 ± 1.17064i

Eigenvalues of A + B GC -C-

-2.89759 + Oi -C- -3.11793 + Qi

-1.53062 + Oi -C- -1.46147 + Oi

-1.5091- ± .74849i -C- -.02000 ± 1.17188i
Eigenvalues of Ac - KCc

-.07458 ± 1.46608i -0- -.08627 ± 1.46583i

-.05199 ± 1.17046i -0- -.04420 ± 1.17064i

Eigenvalues of A c +B G -KCC- -- C
-3.02017 + Oi -3.23401 + 0i

-1.46304 ± .64937i -1.18781 + 0i

-1.27355 + Qi -.01849 ± 1.17817i

C = Controlled Mode Eigenvalues

S = Suppressed Mode Eigenvalues

O = Observer Mode Eigenvalues
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Elimination of observation Spillover

The approach taken during this portion of the analysis is

directed by an awareness, a priori, that sensors will be added.

As a preliminary step, the procedure for applying the transforma-

tion method to the control gains is first reapplied to the obser-

vation gain (K). The same sensor and actuator pair at grid point

seven is again rotated until the smallest singular value of C5s is

driven to zero. Table VI presents the results of the eigenvalue

analysis which followed. Q replaces F as the observation weight-

ing matrix acting on the controlled states. Once again, the

system matrix is seen to be stabilized and diagonalized via the

transformation method. A more pertinent case, in light of a forth-

coming examination of sensor additions, is an application of the

transformation method to the system with the sensors in their

original orientation. Table VII, below, lists the singular val-

ues of Cs for the fixed six sensors. An examination of their

relative magnitudes indicates that, although the last singular

value is non-zero, some potential benefits may be gained by apply-

ing the transformation method with this singular value and its

associated right singular vector.

Table VII

Singular Values of C ; Six Non-reoriented Sensors

Number Singular Value

1. .70706
2. .70423
3. .70363
4. .49803
5. .42875
6. .28536
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Table VI

Elimination of Observation Spillover; Q 10ioo.oEijI

System Eigenvalues

Before After
Transformation (KC 500) Transformation (KC=0)-

.12469 ± 5.69223i -S- -.02855 ± 5.71073i

-.02838 ± 5.67583i -s- -.02838 ± 5.67583i

.06669 ± 5.15788i -s- -.02575 ± 5.14935i

.00396 ± 3.85266i -5- -.01924 ± 3.84834i

-.01746 ± 3.55780i - -.01778 ± 3.55770i

.03719 ± 2.97542i -S- -.01482 ± 2.96458i

.06713 ± 1.45779i -C- -.08626 ± 1.46583i

.03931 ± 1.16093i -C- -.04420 ± 1.17052i

-2.33756 ± .32019i -0- -.52896 ± 1.42215i

-1.72715 ± 1.20427i -0- -.05307 ± 1.17791i

Eigenvalues of A + B G

.07457 ± 1.46607i -C- -.08626 ± 1.46583i

.05199 ± 1.17046i -C- -.04420 ± 1.17052i

Eigenvalues of Ac K

-2.89750 + Qi -0- -.52896 ± 1.42215i

-1.50921 t .74854i -0- -.05307 ± 1.17791i

-1.15308 + Oi 0

Eigenvalues of A c + B c G -KC c

1.45136 ± .959056i.405±l197

*2.13224 ± 1.31631i .43833 ± 1.59171i

C = Controlled Mode Eigenvalues

S = Suppressed Mode Eigenvalues

0 = Observer Mode Eigenvalues
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Table VIII

Reduction of Observation Spillover; Q 1000.0[I] (Fixed Sensors)

System Eigenvalues

Before After
Transformation (KC #0) Transformation (KCs#0)

.12469 ± 5.69223i -S- -.06666 ± 5.71292i

-.02838 ± 5.67583i -S- -.02838 ± 5.67583i

.06669 ± 5.15788i -S- .09387 ± 5.21012i

.00396 ± 3.85266i -S- -.05836 ± 3.81382i

-.01746 ± 3.55780i -S- -.01331 ± 3.56096i

.03719 ± 2.97542i -S- -.02278 ± 2.96146i

-.06713 ± 1.45779i -C- -.02024 ± 1.47982i

-.03931 ± 1.16093i -C- -.09759 ± 1.10147i

-2.33756 ± .32091i -0- -.27202 ± 1.34862i

-1.72715 ± 1.20427i -0- -.03520 ± 1.20825i

Eigenvalues of Ac + B cG

-.07457 ± 1.46607i -C- -.07457 ± 1.46607i

-.05199 ± 1.17046i -C- -.05199 ± 1.17046i

Eigenvalues of A - KCC- C

-2.89750 + Oi -0- -.20967 ± 1.17020i

-1.5308 + Oi -0- -.04992 ± 1.46369i

-1.50921 ± .74854i -0-

Eigenvalues of A + B G - KC

1.45136 ± .95906i -.01187 ± 1.48607i

2.13224 ± 1.3163i .13171 ± 1.18510i

C = Controlled Mode Eigenvalues

S = Suppressed Mode Eigenvalues

0 = Observer Mode Eigenvalues
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The results of this analysis bear out our expectations.

First, some observability has been gained, and response is im-

proved. This is born out by examining Figs 14 through 17,

which are the line of sight response histories with and without

transformation. However, an examination of Table VIII shows that

the additional observability was not sufficient to generate a

completely stable system. The observation spillover has been

reduced, but not eliminated.

Sensor Additions

Until now, we have seen that the transformation method can

be successfully applied to the tetrahedron. Spillover can be

minimized or completely eliminated, depending on whether or not

sensor and actuator reorientations are permitted. In reality,

it is perhaps more likely that one would have less than complete

liberty to do this. Regardless, the specified line of sight

criteria has not been met. Hence, we are left with sensor addi-

tions as a last resort.

Two sensors were added to the system at grid point one.

This number and location are essentially arbitrary, but will

serve as a starting point for more exhaustive subsequent analy-

ses. Table IX, using the format applied throughout this report,

presents the results of this case. It is clear that sensor addi-

tions have allowed the same system matrix block diagonalization

as previous techniques. However, as has been the case previously,

Figs 18 through 21 demonstrate that the criteria for line of

sight response has not been met. The improvement to note is
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between time history response associated with Table VIII and

that of Table IX. Clearly, the addition of sensors has enhanced

the overall performance.

e
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Table IX

Elimination of Observation Spillover; Q = i000.0[Il 8 Sensors

System Eigenvalues

Before After
Transformation (KC s#0) Transformation (KCs=0)

-.01473 ± 5.71307i -S- -.02855 ± 5.71071i

-.02838 ± 5.67583i -S- -.02838 ± 5.67583i

.02350 ± 5.15484i -S- -.02575 ± 5.14935i

-.05240 ± 3.84096i -S- -.01924 ± 3.84834i

-.01538 ± 3.55804i -S- -.01779 ± 3.55770i

-.02363 ± 2.96131i -S- -.01482 ± 2.96458i

-.07371 ± 1.46483i -C- -.07457 ± 1.46607i

-.05187 ± 1.17031i -C- -.05199 ± 1.17046i

-15.6899 + 0i -0- -.03632 ± 1.19306i

-5.60922 + 0i -0- -.00733 ± 1.46676i

-1.20084 + 0i -0-

-1.02196 + 0i -O-

Eigenvalues of A +BcG

-.07457 ± 1.46607i -C- -.07457 ± 1.46607i

-.05199 ± 1.17046i -C- -.05199 ± 1.17046i

Eigenvalues of A - K c

-15.69921 + Di -0- -.03632 ± 1.19306i

-5.62028 + 0i -0- -.00733 ± 1.46676i

-1.15106 + Di -0-

-1.01144 + 0i -0-

Eigenvalues of Ac +B cG - KC

15.33771 + Di -.07457 ± 1.46231i

4.12626 + 0i -.02153 ± 1.19748i

2.48129 + 0i

1.25725 + Oi
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Conclusions

Two key conclusions can be drawn from the preceding analy-

ses. First, given a fixed number of sensors and actuators with

fixed orientation, the destabilizing effect of observation spill-

over and control spillover can be "minimized". When a reorienta-

tion of those sensors and actuators is permitted, these spillover

effects can be completely eliminated. Elimination of either con-

trol spillover or observation spillover guarantees system stabil-

ity, regardless of whether or not response criteria are satis-

fied. Second, if sensor reorientation is not allowed, complete

elimination of observation spillover can still be accomplished

through sensor additions.

The transformation method was found to be very effective in

eliminating control spillover and uncoupling system eigenvalues

when the number of actuators in the system is greater than the

number of modes to be suppressed. When the number of modes to

be suppressed is equal to the number of actuators, complete

elimination of control spillover can be accomplished through

an actuator reorientation which reduces the rank of the control

matrix, B. A parallel case can be made for the elimination of

observation spillover where the number of sensors is greater

than or equal to the number of suppressed modes. When reorien-

tation is not permitted, the degree of response improvement is

strictly a function of the relative magnitudes of the singular

values of the decomposed matrices. For the specific cases exam-

ined, the truncation of higher frequency modes was seen to be
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valid. This truncation may not hold against other models.
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Recommendations

The major theme of this analysis suggests that, due to the

complexity of larger and larger space systems, controllers will

have to be developed to operate on only those modes critical to

system response. This requirement is imposed due to limited

computer and hardware capabilities. Since line of sight

was established as the performance criteria in this study, the

modes were arranged in order of decreasing displacement at the

selected grid point. The decision to control two modes and to

suppress six was arbitrary. Since the selection of "critical

modes" is the starting point in developing an eventual control-

ler, the importance of this step cannot be overemphasized. No

automated technique for this process is currently available. An

exhaustive re-application of the computer technique found in

Appendix A may result in satisfaction of the prescribed time re-

sponse criteria. More importantly, valuable insight into this

task of critical mode selection might be obtained as fallout

from this study. In a parallel sense, the selection of two

sensors to be added for the final case examined was also ar-

bitrary. Once again, a follow up with varying numbers and loca-

tions of additional sensors would be necessary to develop the

optimal controller for this model. Finally, sensitivity to

modelling inaccuracies would be a natural topic for further

analysis. Parameter variations would have to be incorporated

into the NASTRAN analysis provided in order to simulate mode

shape and frequency errors for this sensitivity study.
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Appendix A

Eigenvector Results of NASTRAN Analysis

67



Real Eigenvectors

Eigenvalue I = 1.37043E+00 Eigenvalue 2 =2.15145E+00

Eigenvector 1 = :2.47073E-01Egnetr2 .99EO
4 2.30929E-0127857E-02-.488EO

1. 45180E-06 -. 80E0

-1. 96263E-02 8.32862E-02
3.3973E-024. 80849E-02
7 6. 81283E-02

-721326E-02 6. 99996E-02
-3.69602E-022259E0

4.2.25294E-02
4.397247E-02 I-4.72104E-02
519624-0 5. 45051E-02

5.2924E-2 4936 10E-02
L4. 39672E-02. -4. 72153E-02i

Eigenvalue 3 = 8.78894E+00 Eigenvalue 4 = 1.26576E+00

Eigenvector 3 ='6.36794E-02 Eigenvector 4 = 2.74559E-02
3. 67778E-02 -4.75782E-02

1. 98377E-O1 L1.71840E-01
1. 14530E-01 I2. 97744E-O1
2. 00976E-01 -6.81682E-05
1. 54760E-01 -2. 51248E-01
6. 80356E-U2 3. 43581E-01
9. 76233E-02 -8. 19014E-02
1. 36292E-01 -1. 71848E-01
1. 00014E-01 3. 89435E-01

L9. 78391E-02J 8.192] 8E-02i

Eigenvalue 5 =1.48101E+01 Eigenvalue 6 =2.65165E+01

Eigenvector 5 = 8.78330E-02 Eigenvector 6 1.35323E-05
-5. 07014E-02 ~.1,21816E-11
-1. 29877E-01 3. 40156E-11
3.09503E-01 -2. 04139E-01
1.78636E-01 3. 53548E-01

-3. 51419E-01 -6.05706E-06
2.86593E-01 -2.04139E-01
1. 22432E-01 -3. 53548E-01.
1. 13906E-02 1.08602E-04
2. 49398E-01 4. 08202E-01
1. 86846E-01 6.80214E-10
1.14008E-02J L5. 06531E-lOj
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Eigenvalue 7 = 3.22159E+01 Eigenvlue 8 = 3.26133E+01

Eigenvector 7 = -2.66140E-02 Eigenvector 8 = -2.99367E-02
4.60655E-02 -1.73093E-02
3.30215E-05 8.78423E-02
3.37411E-02 4.07052E-02

-5.84417E-02 2.35996E-02
3.23144E-05 3.55373E-02
2.73330E-02 2.74211E-02

-5.48104E-02 2.79794E-02
-4.91269E-01 -4.87453E-01
3.38171E-02 3.79914E-02

-5.10814E-02 9.80954E-03
4.90852E-O1 1-4.87867E-O]

Eigenvalue 9 7.99170E+01 Eigenvalue 10 = 1.06164E+02

Eigenvector 9 = 9.90668E-02 Eigenvector 10= -3.38986E-03
5.72029E-02 5.84999E-03
1.72892E-01 -1.60534E-05
1.07566E-01 -2.28617E-01
6.21328E-02 3.9596BE-01

-4.95312E-01 4.96376E-05
-1.67880E-01 3.78349E-01
-2.19818E-01 4.55436E-02
-1.11010E-02 -1.47053E-02-2.74347E-01 -2.28600E-01
-3.55381E-02 -3.04859E-01
-1.10861E-02 1. 47172E-02

Eigenvalue 11 = 1.19320E+02 Eigenvalue 12 1.95068E+02

Eigenvector 11=" 6.36959E-02 Eigenvector 12= - 3.20580E-02
3.67781E-02 1.85105E-02
9.58836E-02 6.43806E-02

-2.40062E-01 -4.02579E-01
-1.38592E-01 -2.32435E-01
-2.60496E-01 -1.30450E-01
-8.60592E-02 3.20382E-01
3.94412E-01 -1.58741E-01
6.96952E-03 -9.27787E-03
2.98410E-01 2.27168E-02

-2.71939E-01 3.56828E-01
6.97073E-03 -9 28169E-03

Eigenvector Tx1 y1 .z 1 ,

Z 41
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Appendix B

Main Program Listing
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R'OO; AM TErRA 74/74 OPTI. FTN 49 8+518

PROGRAM TETRA(1NPUT=/dU,%OUJTUT=/i32q TAPE5# TAPE69 TAPE7)
DIMENSION Yt2I1))YP(20)qWORK(5,2C 1140RK(5)
DIMENSION ,CcN8(8,16),CSP8(e,i6),C-.NT(16qe),CT(ir~i)
nI4ENSTON TI (1,6) ,TTi(6,1),'V2(i6v, I,TT(1,15)

5 D14ENSION VV2(16,16),S2(i6,i6f),U.K2(tb915);UK1(t,16)
OIMENSION OK2(1,1b)tOKT(i6,25)
Dtr1ENSION XXi(2i3)IXX2(ZiU3)XX3(23),XX.(2W;'),XX5(2C 3) ,XX5(2!3)
)I4ENSION XX7(203),XX8(203),TM(2-3I ,XI(2'j3sX2(2L3)
DIMENSION Z8(2up2J)

1011 DIMENSION r2(2,8),TT2(Be),-Y(5,?)RT(28)vRT3(29 2)
DIMENSION V3(4,2),CTT2(2916),VV3(.,'4),S3(1b,16),ULX3 (16p 15)
r.T 4-N SIO'4 RTII (2,9 2),v0K3 ( 2,1) ,3K ( 2 p16) 1 ) KT2 (89,40
014FNSION BO(iEfi6)tSV(8) ,W.(ib)
),14ENSION Rl (8, 3) ,RRI (8,98) , IRR1 18 9 )

DIM ENS!ION PH~~i)PI~~i))ip)3(s2

OIMENSION KCR( 16 v )
DIMENSION USP4(12,8)
lI4NSION ATOT(16,ib),RTOT(I;,,Cd),-ror(a,t -)

2L DIMENSION ACON (16 v16) PASUP (16bvi ) v30UN (15,L),BSUP(16 96)
DIMENSION CSP9(±698)
0I4ENSION CY(lb,16)qACNb (±6,16)
0I4ENSION WK(32) ,CCT(i6,i6),CN(15,t6)
DIIENSION WKi(32)vW(Z(32),W<3(32)

25 DIMENSION ACNl(16,16),UC(16,16)
DIMENSION CCON(SPib) ,CSUP(6,116)
DIMENSION CCN2(8,16) ,CCNI(i~,8),8.-41(i6,5)
DIENSION A CN 2( Lb 916 ) vC X(6v6) tL X ( 16 9i15
0IMENSION BCN2(6,i6),CSP±(8,i6)IBS~i(16,5)

1-1 DIMENSION C0M3(l6,16) ,C(16,16)
DIMENSION R(bvbhD0(16,16) ,RY(6,i5),A;ONT(1&,i6) ,CCON1(16,8)
nIMENSION RX(8,±6),P(1boi6),OKT;ZN(3,16)OK(i.,S) RR(6,6)
0IMENSION kTT (19 16) qUL (16 15 ) 9CC (13,1 b),yDS PI LL ( 6q16
D)IMENSION CSPlLL(1bs:'6),F'3(te,16)

W nIMENSION COMi(16,16,,COM2(16,.L6),S(l6,15),GO(6,16)
DIMENSION CO(l161),COC (i6, ib)
DIMENSION SS(16,16),RRR(6,6),RU(1698),#RV(lb,6)
DIMENSION 7(16,16),SO(i,6l)qqDr(,5
DIMENSION PHIT1(16,i2),BSP3(i6,S)t3SP4(15,E-) PHIT2(iB,±2)

DIMENSION RT(1,1) ,V1(16,1),VV(16,i ),S1ULE,i6)
DIMENSION ULXI16,16),OO(i5,16),;ti(ii),GO1(11)G2(,i.6)
COMPLEX W (2 f) 7O ( 209 20),WW (5 )pZaO ( 5,3 )I
COMPL EX Wi(b) tW2C8),U 3(8) ,zi(86) 972(8,81 1,73 (098)

45 ~ INTEGER FFFFlF2,vF39F49GGG, G1,G2,339 Gu
INTEGFR N506NbN
INTEGER K?
INTEGER NBKK
INTEGER F5,N7
INTEGER IFLAGNE0NJJ
INTEGER NY
INTEGER INIT
INTEGER IZtNNgIJOR
iNTEGER LMOPNOIAIBIC
INTEGER itJoNt1,FGpFFoGG
INTEG ER NOIMNOIMII(INsKOUT, KPUN:'l
REAL TI, TOUT,9RELERRABS ERR
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PRGS:AM TETRA 7',/74 OPT±l FTN 4.8+518

RFEAL r.1 0 2,O3 04,0
R TA L 06

(R '~AL TOt.
REAL CAMF
REA~L

COMMON/t4AIN1/NDIMNDIMi, COMi
6ti ~~C r)M M N/ I NOU 7/KOU TKIN vK P UNC61

C 0M 4 0N /MA114 2/C 0M 2
rOMhlONI/MAIN3/COM3
EX~TFRNAL XOOT
F'cAD* ,N5

NIMi =i7
TOL=. Inil

KOUT= 0
75 KPLJNCH=7

IER=)
DAMP= .005
NY=O

Br KK=O
M=8-N5
FS=2'0 N5
G=2fM
FF=N5 +i F

FI=F5 #1
F2=2* F5
r3=F2 +i
F4.=F2+G

9c IF(K.GTeC)GO TO 37
READ", ,N6
R--A0' ,N7

0

20 20 I:1,1t
00 13 Jz1,1b
4Tor(i,j)=j~u

11 CONTINHUE
?I CONTINUE

00 3V Izl,8
J148B

Los ATOT(19J)=1.C
39 CONTINUE

On) 35 Is9916
JuI-8
READ% ,ATDT(IJ)

11t 35 CONTINUE
DO 36 1=916
READ ,ATOTC1,I)
ATOT( II)z-DAMP*2**AT0Tc1ip)

is CONTINUE
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P~'A~ ETA74/7k OT: FTN 4*8+518

PRINT

P1I4T'90*THIS RUN REPRESENTS AN AN".YSIS -OR AN EIGHT 40ODE*8
PRI4JT~j*APPF.OXIMAT1ON TO THE SY3TE1,WITH "059" MOnES"

1 2c PRINT 1,1CONT ROLLE C AND "9-49- MODES SUPPRESSE,1"
P R INT A01,"
IF(N7@GToO)GO TO 169
PRINT ~*

CREAT E 8 MATRIX

52 00 7.1 1=i,8
13U no Sri J=1,6

9ror (I,J)=t;*d

51 CONTINUE
7"1 CnNrINUJE

00 72 I=1,i6
135 0D) ri J=lpi6

IF(I. EQeJ)C(IJ)=l*J
7t CONTINUE
?2 CONTINUE

i 4Q 00 74 1=1912
DO 73 J1VE uI

7 3 CONTI NUE
74 CONTINUE

145 00 76 1='.,6
r0 75 JzI.2

75 CONTINUE
75s ^ONTINUE

DO 77 J=3,'.

77 CONTINUE
?8 CONTINUE

155 00 8C 1=16912
0O 79 J=596

79 CONTINUE
so CONTINUE

16L 03 82 1=1912
D3 81 J=198
PHICI PJ)-zUot

52 CONTINUE
165 00 54. J=9pj(

nlo S3 1.1,12
READ* 9PHI (IVJ)

83 CONTINUE
3'. CONTINUE

1 7c 01 86 1=1916
30 55 J=1,12



PROIGRAM T!7T RA 74f74 cOPT=1 FTN 4,F,+518 -

PHIT (IJ) =PHI (JI)
CONTINUE

35 CONrIKUE

175 ~ ~ ~ N 57 LI=tF

IA~i5
I9=12

CALL VMULFF(PHITOLlMONOIAI3,3T)Tl;I> 1R)

CREATE C MATRIX
185'

I F(NY eGT 9 ) GO TO0 5 8
121 1 F (N 6,GT 9b) GO TO0 113

nlo ill 11,gb

Di1(I, J) =D(J, I)
ill CONri NUE
111. CONTINUE
118 L i =N 6

195 MO~i2

IA=8
TR=12

00 CALL 1VULF#- D1pPHIL,tONOV IA,!B, CT0Ti,PIER)
nn 1'*6 I=IN6
DO 14S Jzi,8
:T0T ( IJ) =CTOT (I ,8eJ)

4 F, CONTI NUE
205 14~ CONTI UE

03it 1, I fM:

I l CONTINUE

I t 3 0 3). 1=718

0011, J)=u192 81

01 (1, J)uD(JI-2

215it4 C014TI UE
I I CON4TINUE

Lt0 74 ) 31,!,p

Di~i2)=-b12237b1



PIOGIA41 TETRA F4/74 OPT1l FTN tob+5i8

40=12
2 R. NO016

lq=12

CALL YMULFFcO1,PHIL1,ModliOIA,1B,:TOTgxz, lER)
27317 no 54 1=1,8

DO 53 J=i,8
CTOT ( IJ) =CTOT(I 9J~d)

53 CONTINUE
i4 CONTINUE

2 4 00 56 1=1,8
00 55i J=9vit
CTOT C IJ)=0eC

i15 CONTINUJE
56 3ONrINUE

2415 V;I I F(0N7.eGTeL ) G 0 To 134

CREATE A CONIROLLED AND A SJPPRESSE)

2 5i,
169 00 180 I=i9N5

00 170) J:±,N5

1" CONTIFWE
180s CONTINUE

00 19n J=FFIF5
ACOJ( IJ)=ATOT(IN+J)

19D( CONTINUE
26r. 20 CONTINUE

DO 221 I=FF.Frl
DO 21n JzjN5
A C ONIt I,J) =Al OTQI+ m J

21n0 CON7INUE
265 22'" CONTI NUE

DO 240 1:FFF5
DO 231 J=FFF5
ACON( I#J)=ATOT(I+MJ+M)

?3n CONTINUE
271: 240 CONTINUE

51+ 00 260 I1,M
00f 250 J:1.,l
?ASUP( IJ)=ATOT(I+Nto,J#N5)

250 CONTINUE
Z75 261 CONTINUE

n0 28) 1=i,0
nO( 270 J=GG,G
ASUP( I ,J) =ATOT (I Nb, J*N5)

27ft CONTINUE
28G 280 CONTINUE

no 30 0 I=GG,G
00 29 0 Jr-1,M
ASUP(IgJ)=ATOT(2*N5+1,Nti+J)

19 C. CONTINUE
285 330 CONTINUE 75



PROGRAM4 TE-RA 74i'7 OPT=1 rTN 4*8+518

DO 321 I=GGG
n 0) 3j0 J=GGpG
A S UP( 1 J)=A TOT (2*N,+Iv2 N15+ J)

2V31.f CONTINUE
29132~ CONTI NUE

ClEATE B CONTROLLED AND B SUPPRESSED0

2%9
54 00 34') 11,N5

00 33fl J1,p6
8rO0A CIqJ)=BTOT(I,J)

3 3 1 CONTINUE
3 .3 341 CONTI1UE

0O 3bl' I=FFPF5
r) ( 3 r) 1 J = i
Rr,04 CIJ) =9TT(I+MJ)

35M CONTINUE
33J 36n' CONTINUE

113 00 38 0 I=IpM
DO 37 0 J=1,rF
nSUP( TgIJ)=C-TOT (N5 +1, J)

3?'' CONTINUE
3V' 31n) CONTINUE

0O 4G 9 I=GGG
00 390 J=:L,6
'3SUPC IJ)=BTOTCZ*N541,J)

39') CONTINUE
3i '.G i a0 CONTINUE

IF'(NY*GT.i,)GO To 5621

C CREATE C CONTROLLED AND C SJPPRESSEO
321.

L14 DO '.21 1±,pN6
no 413 J~i9N5
CCON(1,J)=CTOT(IJ)

325 !+1w' CONTINUE
'.20 CONTINUE

DO 44'.0 1I p N6
0O 4.33 J=FFPF5
CCON( Ij)=.a

3 30 :+30 C ON TI NE
14 n CONTINUE
162 0O 4.60 1=19N6

00 '.50 Jmilm
C SUP ( IvJ) CTOT (I pN5.J)

335 4; CONTINUE
460 CONTINUE

ol 48fi Ic1,N6
O 47C JzGGG

CSUP( !,J)zCTOT (I, 24N!5J)
340 47fl CONTINUE

48 f CFOIITINUE
76



PIOGIA'4 TETRA ?L4/74 OPT1l FTN 4.8+518

CR~EATE WEIGHTING MATRICES
345

* IF(NJ'.&Toae)&O TO 541
j165 10) !9i 1=1,6

350~PIJL.

4 3 1 CONTINUE
491 CONTINUJE

TF(NE; GT*6)GO TO) 5t~l

00 49 1 =1,6
00 4.92 J=jit k

F(1(I, J)=Lu
IF QI . En.J) RI (I j. 1

361, 9? ^,NTINUE
'093 CONTI NUIE

GO TO 50i2
1511 Do 497 I198

DO 49E J=196
365

IF(I. EO.j) Rl(IpJ)=1.
1*96 CONTINUE
497 CONTINUE

373 5032 00 520 1=19F5
00 510 J=1,F5

310 CONTINUE
375 5 V) CONTINUE

522 00 54.0 I:1,F5
00 530 J=19F5
ACONT (IqJ)=tCON(J9I'l

53" CON7T NUE
38L 71 E CONTINUE

541 00 56 0 I=,F,
0O 550 J=1,N6
CCONT CIpJ)=CCON(J,1)

5 5 1 CONTIrUE
3 8!, 56a CONTTIIWE

IF(N7*GT.0)G0 TO 625
16 1 00 580 IZ1,L

no 570 J=19F5
BCONT (1,J)=BCON(JI)

39V, 570 CONTINUE
.131 CONTINUE

PRINT-0, G0~
IF(NY.GToL)GO TO 562
no soi itf

395 DO 500 Jalob
RRCI, J)uLOL

5~OD CONTINUE
611 CONTINUE

no 610 196 77



PkOGRAM TETRA 74/Y4 OPT1 ':TN 4%8+518

sin] rONTINUE

00 51.2 I=11(

512 CONTINUE
1rCN6.GT.6)GO TO 619

01) 51 3Ji,
41.61.? CONTINUE

6141 CONTINUE
no 515 1,
R.Ri(7 I)=-l./R(CI)

4 ~ 1. iS5' ONTI NUE

00 6i8 1=11E

ii7 C 04T I WE
4 2. 518 CONTI NUE

GO To 62t,

DO 62fi J=±,8

dP25 S71 CONTINUE
6?1 CONTINUE

DO 622 Iz1,8

522 CONTINUE
4311 DO b24 lz1,8B

DO 62 3 J=198

S23 C ONTI NUE
626 CONTINUE

SOLIE RESPECTIVE RIC,.FTI jQOJATIO43S

4 4 215 LizF5
MO=,N6
N0.N6
IA=16

445)11
CALL YMULFF(CCONTPRRRiL±,pMONOIkI3RUpjC1ER)
NO=F5
OfaLL VMULFF(RUCCONLimON),IAIBS3 009,T ER)
IF(N7,GT,)GO To 63?

4!;PZ~ iz 1 628 I:±,V5
DO 627 J:1j65

A4ZNI ( 1J) =ACON (I pJ)

627 CONTINUE
4555Z8 CONTINUE

IS ,2 00 $3 I=±,pFb 78



PkO'0vAM T~'rRA 74/7'C OPT=i FTN 498+518

0O 529 J1,p6
rlCN± ( IJ)=8CON(I ,J)
FCN2(JI)=8C0NT CJqI)

W) 9 C O"T INUE
l 3 Q CONTINUE

00 632 I-i#G
0O 631 Jip6
8F1SPiI I, J)=BSUP (IVJ)

4 65 IF(N W GT , 0) O.SPiI G,9J) SSP.# (IJ)
55 31 CONTINUE
632 CiONTI NUE

Ir(NY*GT*L)GO TO 563
DO3 634 1=11F5

47. 00 553 J1,jN6
C1 (IJ)=CCONT Ci iJ)
rCrN2 JI) =CCON(J, I)

333 CONTINUE
614 CONTINUE

475 W') 536 IiqN6
DI) 635 J=1,G
CSPIATPJ)=CSUP(IPJ)

-31S CONTINUE
S 3 f CONTINUE

~4 8 i ~ 37 CALL PvRIC(FEACN2,SSG(,CXTOL,IE- )

MO Nb NO=F5
IA=3

485 I9=8

16

4V,9 CILL V1IULFF (RXP, Li, MOpNOIt ,I8tOqRNIC, IEP)
0') 650 11,pF5

00 54 G J=IN6I
iSl CONTINUE

4 91;65.1 CONTI NUE
IFCN7*GT.Li)GO TO 67±

651 O 67f IsIPF5
00 660 J1,tF5
FOCI Q )=E

5 c T ~FC(I *EO.aJ) F0(1 J)f±I

6i1 CONTINUE I

IC:16
CALL VPULFF(BCONR ,tL1,mO,.40,lA,3,Fvpir, IEI)

!i la NOzF
CALL YMULFF(iRVBCOTL1,HONOpxAI3,SOpI:, IER)ICALL MRIC(FvACNIS0,FOSULXT0L,1ER)

L16 79
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10:5

CALL VULFF(R,BCN2,LiM0,N~g~Ip~pCIR

,v2C- MO=F5

Iq~1E,

C Lt=F5

IA~i6

I~z

CALL la'ULFF(BCNIGO, LiMONiIA,;3,U. ,IDER)
5301 MO=N6

IA:1F,
CALL YMUL FF ( UKCCN29 LiyM0NOvIAvI13pC3 91C 9I1 R)
00 592 I:1,F5

53 00 691 J=iF5

i92 0ONTI NUE
00 69L4 l=FFPF5

54 93 59~3 J=1,N5
CN (1, J):-CCT (I-N5,9J+N5)

s9't CONTINUE
134 CONTINUE

545 0O 695 J=FF9F5
CN(I, J)u-CCTCI-NSJ-N5)

514 CONTINUE
696 CONTINUE

DO 698 Ii,105
55r 00 597 J:1,F5

CN(I, J)=4*
5:37 0 ON'.I NUE
sqs CONTIIUE

00 73nl I:1jF5
5515 DO 72t JziF5

CMITJ)=CNCIJ)

CC(Iv J) ACN1 (1IJ) -CN (IvJ)
UL (r ,J)=A CN1 (IJ)4UC (19 J)

'uCOC(T 9J) =ULX (IJ) CX (lpJ) 4A:N2(L pJ)
72') CONTINUE
?3C~ CONTINUE

L1zF5
MOzM6

CAtLL VHULFF(OKCSPtL1,MON~,IA.I3,O3PILLICIER)
5170 LlaG 80



PIOGR7 AM TETl A 74/74 OPT:± FTN +8+5L18

NO=F5

5715 IC=16
(rALL VM'JLFFt8SPI, GO9 Li, M0,N3 oIA, 13, SPILL, IC ,IER)

C RIAT E TOTAL SYSTEM MATRIX
5 80

nV) 75 0 I= 1, F5
00 740 J=19F5
79(1, J)=LILX(I,J)

5 ar 74 CONTINUE
7 5fn CONTI NUE

DO 7 31=1F5
On 760 J=F1,F2
7qJ(I , J) UC (IjJ-F')

,9L '5' CONTI NIJE
7?7!! CONTI NUE

DO 791 1=1,FS
DO 78 0 J=F39F
79(Q1, J) = .

595 1S8P CONTI NUE
73fr CONTINUE

00 510 I=FlvF2
O 5U 0 J=Z±F5

63r' 310 CONTI NUE
5 11 CONTI NE

DO 830 I=FiF2
00 820 J=FI,F2

3Z 1 CONTINUE
330 CONTINUE

DO 850 I=FiF2
00 840 J=F3,F.
71 ('6 J) =OSPILL QI-F59.J-F2)

611) 341~ CONTINUE
550 CONTINUE

00 870 I:F3,F4
00 860 J=19F5
79 (1 .J)=CSPILL (I-F2, J)

ulv 85n CONTINUE
870 CONTINUE

00 890 IzF3,F4
O) 880 JzFlF2

39t9 CONTINUE

00 30 0 JuF3,;F4
7l(1, J)zASUP(1-F2,J-F2)

625 3431 CONTINUE
3t CONTINUE

00 312 Ir-192L 81



PROGRAM TsrRA 74/74 OPT=l FTN 4*84ii8

DO 911 J-1,2u

63 3i CONTI NUE
14 2 CONTINUE
-39~8 1J053=7

NN=2' F5*G
I A 2',)

EIGEN VALUE A14ALYSIS

CALL EIGRF(79,NNIAIJOriW,7Cp7 1 I<,rER)
DO 314 1=1,2w

79(1, J)Z8(IJ)
64 413 CoNrI NUE

I 14 CONTI NUE
PRINT#,9
PRINT* Go()=** 88B
PRINT 40

65i: PRINT~t"T4E SYSTEM ElGENVALUFS"
PRINT * '
PRINTS,"
PRINT Jos 9 "E IGE4VALUE"

PRIN *-0 ..--------------- *

655 NN=NN -1
no 930 iiNN,2
PRINT 10,
PRINT J0 , wf (I)
J=I~l

6i PRINT*,% (J
331 CONTINUE

IA1Ef

CALL SIGRF(ULX,9F5 PIA,9IJ0BWI,703,[ 79,NK9 IER)
665 PRINT*,

PRINT4
PRINT~qTHE EIGENVALUES"
PRINT~gOF A*BS%9 ,9"IE4VALUE"
PRINT* 0 -, -* *---- -- -- ---

b7C ~ F5 =F -1
bTG DO 931 Iz1,F592

J=T4.1
675R1. TWw(J

431 CONTINUE
F52F5 41
00 931 Im1,FS
no 932 Jm1,F5

686 CYCIOJ)aCX(XJ)
332 CONTINUE
933 CONTINUE

DO 935 Iu1,F5
82
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£85 Do 334 J=1,F5
C X (It, J) =CYCQIJ)

934 CONTINUE

335 CONTIhUE
PRT NT,*
Ot.INT*9'*THE ElGENVALUES"
PRINTA9**DF A-KC--" '*IG;-VALUF'*
P' I NT * -- -- -- -

F95=Fr5 -i
695 00 352 I=1,F5,2

PRINT~t&*
PRINT q,* , i )

PRINT *,' w, ( 1J)

700 35 C"ONTI NUE
F5;=FF +1
CALL EIGRF(COCF5 ,IAIJOt~,W2,72,17,WKaIER-)
PRINT ,'

7 (b PRINT'THE EIGEN VAL UES'
PRINT*964OF A+BG-KCO~v" f,"EIGE4VALUE'*

PRINT *, ,

F5=F5 Goi
no 955 I=±,F! ,24

7jIf! PRINTv
PRINT' "W2 (I)
J=I,1
PRINT4 ,9W(J

355 00ONTIrNUE
7 15 F35 +*1

DO 9158 I= .-F t
Do ;67 J=jFS
ACNE, C ItJ) =ACtl (I, J)

.367 CONTINUE
726 368 CONTINUE

CALL EIGRFACNF5,IAtJOBW3,z3,IrNK3, Ei.)
3)0 3T07 1=2,FS
no 969 J~jF5
ACN:.CIJ) =ACNb(IJ)

725 969 CONTritui
370 CONTINUE

PRINT' ,

PRINT ft" Go
PRINT~mp"THE. LIGENVALUES"

73b PPINT',&*DF A EIGE4VA-UE~'f

F5=FS -i
DO 9r6 I:1,9F5,2

735 PRINT', owl

P'RTNT09 00,W3(J)
356 CONTINUE

F'sFIS *1

83



P~GRAM TETRA 74/74. OPT:1 FTN 4*8+518

INITIAL CONCITIONS

Y (2) =@006

Y (4) =901
y (5) = .0ii( i

751,y(6)=eL

y(9)=..jfl3
Y(13)=$9 .0

Y(1)=-*O01
Y(i3)=-.U3
Y(t4)=.Uri8

Y(15)=oU3
76.-; Y(15) =- 0 2

Y(17)=eC2
Y(13) =-.ti2

Y(20) =.t004

INTEGRATE STATE EQUATIONS

77C TI=G0

IFLAG =1
NEQN4 20
AFISER Azle CE-0~3

775 R5LERR=1.IjE-G3

1132 CALL OOE(XOOTPNEQNY ,TI , TOUT 9 ELLit pA SERR pIFLAG 9WORK9 IWOR()
Ir(TIeLTeTOU7)GO TO 11:2
XXI(JJ)=Y l)

78~i XX2(JJ)=YCZ)
XX3(JJ)=Y(9)
XX( iJJ) y (1c)
XX5(J J)ZY (11)
XXS(JJ).Y(1Z)

7 8F XX7(JJ)=Y(i3)
XXB(Jj)ZY (i.)
J.J=jj 41
TOUT: TOUT,. I
IF (TI 9LE 20 o) GO TO 1102

GE0RT A-ND PLOT LINE OF SIGHT X %N Y

795 n0 1103 I19201
T4( C) uI-1)*o1

00 1104 1=19201
84



PR0r-AM TETRA 74/7'. OPT1l FTN4 498+518

Xi(I)=-.Zi.707274XXI(I)+93998955'KKZ(I)

X1itl)=X(I)..C2745586*XX5I)-.02661'.Cl'xxL(l)

x(I) =X2(l)-.C6507Oi42#vXX3 (I) +.L35?T784*XKI (I)
805 ~X2 (I ) =X2 (I) -*L,75782 2*XX5 (1) + 9%;46D.553' XX6 QI

X2 (I ) =)2( I) -o17 3 931XX7 () . 0'~u 1L u 21 61 XX8T)

CALL PLOT (L., C.V-3)
CALL SCALE(TM,8*,281i)

8iC CALL SCAL E ( X iq8 *v20 1,vi)
iii CALL AXS( qe4TMq48 yol422 40

CALL AXIS(t.,C.,4HLOSX48.,9U.,X1(2'2),K. (2C3))ICALL LINE(TVMXI,201,i,5,2)
CALL SYMBOL(4.,6.,U.21,i3HLOSX VS, TrMEvr..,13)

81 CALL PLOT(i(.,ogeo-3)
CALL SCALE(TM96.,20191)
CALL SCALE(X2,89920i,1)

11 T CALL AXIS (V . O.,4HTIME, -4p 89 ,Jog r(2u 2), rm(2!3) )
CALL AXIS ( C . C . 4HLOSY9 4 98s ,9 u 9 v X22 2) K 2 (2 3) )

8 2; CALL LINE (TM ,X2,92 019 1 , 02)
CALL SYMBOL (4ot6op0o21v,13HLOSY IS. TIME9 D pi3)
CALL PLOTE(N)
IF (Me LTN7) GO TO 1±3l
IF WPC<GT a) GO TO 1±0±

8 2 ,05=2e 0

9:;7 00 959 I=1M

83C 598 CONTINUE
959 CONTINUE

DO 961 I=GGG
00 960 J~igi2
PIIITI (IJ)=PHITCIP5,J)

835 96Ir CONTINUE
361 CONTINUE
362 Li=G

M3 =1.2
NO=3

8 4L-IA=16

IC~iB
CALL VMUL FF(PHIT I pDiL I pMOvN3 vI AI B, 3 P3, 9 1,I1ER)
00 364 1=19G

845 DO 363 Jjl(b

4s3 CONTINUE
354 CONTINUE

00 966 IL,1,G
851 00 966 J:1,G

CCIJ)=O.C

3 F. CONTI NtUE

855 IAmiS 85



PCOAM TFTRA 71,/74 OPT=i FT'.J 4,.8+518

8 6L

CHE~K FOR ZERO SINGULAR VALJC

86r. CALL LSVDF(SSP3,IAgi1ONOCplC ,NE3,SWKIER)

I (14.LT.05)GQ TO 1375
35=06 -out

871 IF1FC6.LT.-2.c)GO TO itc36

fli (4 *3 )1 ' /01

D(7,3)=QF,/Oi

GO TO 962

PRI4T#,"lTHE LEAST SINGULAR VALUE ES '#gS(B)
PRINT 4 9**06 = *Q6

88f, C APPLY TRANSFORMATION TECHNIlUE

00 1076 J=176
TTC1, j)zBP3(3,j)

885 1 17r, CONTINUE
no 1,078 I=1,6
T ( Iti)=TT (it D

t1178 CONTINUE
DO 101 I=1,N5

89. 00 1679 Jxiq±Z
PHIT2 (IqJ)=bf8

10 71 CONTINUE
138' CONTINUE

DO ICU8 IZFFpF5
891. 00 1018t Ji,±2

PH I T2 (TyJ) PHI T(I+M.J)
1 181- CONTI NUE
L,78; CONTINUE

Li=F5
9jQ M0=12

IA=16
13z22
ICI6b

91h ~ C~ALL YMULFF (P#4lT2 9OLitM09,N3 1149,99 80OkI1^ ER)

CALL VMULFF(BCONTLIMON4OlI13,3rICIEP)

IAUI 86



PROGIAM TFTRA 7k4/74 OPT=i FTN 4*8+518

Ic=1.
CALL V14ULFF(TTvRp Lig h0,NO,I4 iB,kriICIER)

c3E, NO~1.
CALL V'ULFF(RTiT qLiMONO,[A p!Bp kE IC91 E )

CALL YMPULFF (BTRTIVLI MONO, IA,913t Iit lC, E)
Do 1183 J=1,F5

925 R4TT( 1. ,.J) =ST (Jqi)
138- MI~TT NUE

L i=F!,
MO~i
NO=F'5

93k. TAziE6

Iib

CA LL VMULFF (VIBTTL 1, MO9NO I A pIBpV V, IC, 1ERP)
00 IC86 I=iF5

9 31i rnO 1185 JiF5
00(1, J)=U90

1413-: CONTTNUE
i)8r CONTINIuE

9~4U CALL MRIC(F5,ACNiVVQoSiJLX1,T3LIER-)
Li=i

IA=i
94'

CALL VYULFF(PTIBTTL±iON)IA3, OiI' IEP)
?1O=F5
I1=1.b

950) CALL VMULFF(GO1,S±,L1,hONOIApI3,3O2,1C,1ER)
Li=6
MOi
NO~i:
I A=6

955 IR~i

CALL VMIULFFCTGOZ2,Li,MONOtIA,IB, ;)trcpiEk)
00 1088 1=19G
n3 13.87 Jr-l,6

L 1 aCONri NIE
L 17 4 CONTINUJE

00 Itig9 116F

1180 CONTINUE
11)9" CONTI NuE

DO 1991 J=IF5
87



.AD-A094 766 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO-ETC F/B 12/2
MODERN OPTIMAL CONTROL METHODS APPLIED IN ACTIVE CONTROL7OF A T--ETC(U)

DEC 80 A M JANISZEWSKI
UNCLASSFE AFIT/AS/AA/BGD-2 N



PROGRAM TETRA 74/17 OPT=1 FTN -. 8+516

97t IJLX(IpJ)=ULXI(IpJ)
L191 CONTT NOJE
LJ9' CONTI NUE

KK:KK 41
DO 1201) 1 7,,9

975DIX :DI3

120 CONTI NUE
N7=1
GO TO £l:B

119F PRINT* ""INGULARITY PROGRAM FAILE)"
98' ti1 STOP

EN

88



SUBR)urrN.- MRTC 74/74 OPT=1 FTN 4*8+518

1 SUJBROUTINE MRIC(NAS,, Xf7,TOLqI-')

COMMPUN/AINi/NDIMNO1M1 ,F(15)
COMMPON/MAIN2/TR( 16)

5 CO~lMON/INOUT/NOT
ArlV=TOL'1 .E-L,6
NN=N" NOIM
N91=N -i
IND=i

Ij. COU'JT=C.
IF (IER*EQ*1)COUNT=93.
IF(IER*EQOi)MR=N
IF(IEr~oEO~i)GO TO 1OU

30fl CONTI NUE
IER=U
COUNT =COUiIT+i.
DO 15 1=19N
Or) 15 J=1,NNNOIM

1t5I X(J)=-S(J)
CAL.L INTEG(NAXZT1)
CA~LL FACTOR1(NZXMR)

IF(MR*LT*U)GO TO 2UO
25 IER=O

CALL GMINVCNPNXZMRO)
CALL TFR(TRZNNpi,2)
CALL t4MUL(ZTRNNPNX)
DO 1B II:1,NNNOIMl

31'L
00 17 J=II,EN,NrOIM

X(I)=X(J)
1? I=I~i

35 t8 CONTI NUE
101 CONTINUE

00 16 I=1,N
16 TR(1)=-.oG

TOLI=TOL/1U.*
4C MAXIT 4G

DO 44i IT=L,hAXIT

IF(I.ER.EO91) GO TO 10L
CALL MMULCSXNNNF)
CALL MMIULXvFNNN*Z)

45 DO 20 11I,NNpNOIM

00 20 JzI,II
X(J)= A(J) -F (J)

2r1 7( J) =7(j) 4Q(j)
1.61 (11 CONTINUE

IERzO
CALL NLINEO(NpXp7,XVTOL1iER)
IF(IEP@NE~u)GO TO 200
L=8

DO 25 I1,N 8



SUBR)UTINF 41R"C 74/'74 OPT±1 FTN 4.8.5±8

TRCI)=X(II)

Ci=f'i 4TP (I)
IF(A8S(Ci)*GT*i*E.2G)GO TO 5o
IF(L*NE*N)G' TO 4')
CALL GTINV(NNZFMRv)

b." CALL MMUL(SvXNNNZ)
00 3C I=,INONIM
II11. NM~I
00 3bi J1,qII

33 Z(J)=A(J)-Z(J)
70 IF(NR*NE.N)WRITE(NOT,35)MR

35 FORMAI(26HORICCATI SOLN IS DSD--Rk4K13)
GO TO 65

'.7 CONTINUE
wRiTrE (NOT ,45) MAXI T

75 15 FORMAT(21$HLRICCATI NON-CONVERGENr IN12,1I.H ITERATIONS)
GO TO 63

50 WRITE (NOT955)ITvTi
i 5 FORMAT(29ORICCATI SLOW UP 4T ITE;ZTtONI2,i2H INJITIAL T=F±3o5)
6') IER=I

V85? RETURN4
221 iF(IND.EQ.2)GO TO 250

IF (COUNT.GE.1Co) RETURN
Ti=Ti /(29*COUNr)
IND=2

85 GO TO 300
2530 Ti=TiCZ.9*COUNT)

INo=i
END0

FU,1CTrON )(NWRM '74/ 74 OPT=I. FTN 4.8+518

I FUJNCTION XNORM(NA)
DIMENSION A(ib)
COMNIO /MAXNI/NDIM, NOIM.
NN=J4 NOIN

TR=A Cl)
IFVI.EO.1l)G0 TO 20
1=2
00 10 II=NOIHINNNOIM
j=iI
00 5 JJ=IIINOIM
Cl=CI +ASS (A (J)*A (JJ))

TR=TRsACJ)
15t3 121+1

TR=TR /FLOAT (N)
nl is lIxuiNNNOIM1

29) Xt4ORxAS(TR) ,SQRT (CI)
2 RETURN

END 90



SUBR)UTTN:7 4LTNEl 'v/74 OPT1i FTN 4*8+518

S'JBROUTINE MLINEO(NqACqXqTOLIER)
fIMENSION A(16)qC(16)pX(16)
COMMON/MAINi/NDIM, N~lMi
COM*10N/MA IN 3/F (16)

01' TOLI*E-i6
DT=. 5
0Ti=0
NN=N' NDIM
00 5 IIIvNNNIMI

iu DTi=DTI.A(I1)
0)Ti0DTi/N
IF(0TI9GT't.le)DT=0T*4.C'/DTi
T1=1
D0 20 I1ivN

15 DO 15 JJZINNNUIM
ti X(JJ)=DTIPA(JJ)

11 I=r1 4NOIMI
CALL GMINV(NNX, FNR~c.,

21; IER=L.
IF(MR .NE*N)RFETURN
C' LL M'UL (CFNNvNX)

DO 46b II=IpNNpNDIM
25 j11r

IF(r. EO.1)GO TO 3Ji
DI) 25 JJ=IIINDIM
0(J) =C(JJ)

?; J=J4.i
3J3 ID=J

00 35 JJ=IINNINDII
C(J) =CT*DOT (NpF(II) X (JJ))

35 J=J~j.
F(IO) =F(ID)41.L

3F 4.1 I=I~i
00 90 IT=1,20

CALL MMUL(CFNNNX)

J=1
GO TO 76

so JZI.
00 65 JJ:1,INDIM

45 C (J)-=C(JJ)
5; J=J~

F 0 ID=J
DTizC (J)
nlo 7s JJuINNNOIM

5c ~C (J) =C(J) .0OT CNF QIIx(JJ) I
7s JUJ~j

J=xJ-1
00 80 JJCIIJ

81 X(JJ)=FCJJ)
55 IF(AqS(C(IO))*GT*lE+15j)GO To 95

II1 91



SUSR)UTIMP PjLTN~t) 74/74 OPT1l FTN 4..8+518

11=11 4NDIM
IF(IsLE*N)GO TO 60
IF(NET.Ern.N)GO TO 15C
CPALL MMUL(XXNNNgF)

49 CONTI NUE
35 IER~i

P.9T1JR h~
6r ti! CONTINUE

NMI=N -i
DO 155 I=1,NNvNOIM

00 155 JJ=III
7i 55 X(JJ):CC(JJ)

IEIR=C
RF:TUR 14
EN D

St-IRK)VTTNE FA"'0Pi 74./74 OPT~i FTN '.8+518

i SUB~ROUTINE FACTOR1(NASMi)
OIMENRION A(16),S(16)
C 09110N/MA IN /NOIM, NDIMi
COP*ION/INOUT/KOUT

E, TOL=i *E-6
MRQ
NN,=N" NDIM
TOLi= 0.
00 1 I=1,NNNOIMI

I. IF(R9GT*TOLi)TOLl=R
T OLI= TOL 1*1 *E-1 2

141=I1
Do 5flI,

5 S(JJ)=Oo
10=11 4rmi.
R=A(IO)-fOT(IMiS(II),S(Ii))

26 IF(AF3S(R).LT.(TOL#A(I~O+TOL1))GO T) 50i

15 =1

inn, FORP*AT(3?HGTP.IEO To rACTOIR 4N IND-FINITE MATIkIX)
25 RETJRN

0 S (I3)S~kT CR)

IF(I. EnoN)RETURN
114N01M

3. 00 25 JJzLNNNDIM
IJ=JJ*IMI

rp3 ITzII4NlDIM
RETURN

35 EM 0
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SU83R)UTINF INTFG 7&L/7I OPT1= FTN 4, A+518 '
SIJBR0UTINE INTEG(NACST)

COMIIOf1MANfNDXMtNDIMI X (15)
CIMMOI,/MAIN2/COEF (16)
N,4NNIM
!441=N -I

A'4tMXNORM(NjA)
DT=T

14) IF (ANOR*AB's(0T) LE, Ce5 Go ro £0

iN01 Nfl+i
GI TO 5

10 00 15 I11,NNNDIM
15 J=I.Nmi

00 £5 JJ:IJ
( JJ)=OT 11C (JJ)

2L CALL MMUL(ACNNNX)
00 20 I=11N

00 2C JJ=INNNDIM
I1=11 +i

21 S (JJ) =s (JJ) +C(JW)
2i Tt~flT /FLOAT (IT)

IF(INOD.E~ou)GO TO IOU
COEF ( 11) =I@ &

3'] C0EF(II)=0TCOEF(I1I+)/FLur(l)
11=1
00 '.0 lz1,NNNDIM

35 J14+NHi
DO ?5 JJ=Z,j

35 X(JJ)=A(JJ)'#COEF(1)
X(II) zXtfl+COEFC2)

.'1 IT=II+NOIMi

4C 00 55 L=31ll
CALL ?MUL(AXNNNqC)

Ti ='.O EF (L)
00 J5 I=INNgNOIM

45 J=14NMI
00 56. JJ=IJ

50 X(JJ)uC(JJ)
;s II=114ND1141

L=O
50 L=L*1

CALL MM1ULXSpNNNpC)

121r

IF(I* E).)GC TO 75
00 F6 JJ=I1I,1NOIM
S(JJI mSCj)
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SU BR)UTTNC INWIEG 7k/74 OPT=l FTN '4 8+518

71 J=.J+i
75 os 00~ v~ JIN

Ut' KI<=JJ

00 SP, K=1,NNNDIM
S(J)=S(J) +C(K)"X (KK)

31 KK=I(K+NOIM
15 J=J+NflIH

6!, 00 87 JJ=1,NNvNDIM
V C(JJ)zX(JJ)

31 IT=II+NDIM
IF(L. EO.INO)GO TO 10C
CALL ?QULCCCNNNX)

7'. GO TO 60
t')'n CONTINUE

RE TUR N
END

SUBR)tITINE *1~L74/71, OPT~i cTN 4*f+518

S09ROUTINE MMUL(XYN1qN2q'43,7)
DTP4ENSION X(16),Y(16),Z(16)
CO'4r4ONMAINI/N0IM
N17ND3=N01 N' N3
WN0N2=NDIM*M2
On I. I=INi
no 1. JI,9NEtD39NDIM
7(J)=390~

1(1D 00 K=IpNENO2,NOIM
KK=KK 41

7. 7(J) =7(jl) +X (K)*Y ( KK)
RFTURN
ENO

FU4CTION ()OT 74171* OPT±1 FTN 498+518

FtINI TION OOT(NRAE)
DIq-'ENSI0N A(16)99(1(

00 1 1=1,NR
1 DOT =T!OT4A(I)'8B(I)

RETURN
E .4
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SUBi 3UTIM;7 TF; 74/74. OPTil FTN 4*884518

S'J'IROUTINE TFF(XANpM,KqI)
DIMENSION X(16),A(16)
Co'1o N/MAINI/NOIM
J;= (K -1) fNOIM* M
JEND=M#NOIM -I
GO TO (ia,3C,5U,7J,99),I

il DO 20~ Ilig
nlo 203 .JJIIJENDNDIM

21 X(J.J) :A(JJ+JS)
ic RETURN

31 DO !0i IIllN
K«= (I I-1) *NiPIM
Or) 4a JJ=IM

15 41 X((K+JJ)=A(LL+JS)
Pc'TURN

00 6.1 II=1qJEMjN0i1
LL=II +h-1

2) no) 59 JJ=IILL
KK=KK 4t.

i (KK)=ACJJ+JS)
c'TUR N

LL=( M-II) *NOIM+i
00 30 IJ=IN
KK=KK -1
JIJLL *N-I J

5,1 3 A(JJ+,.A)=X(KK)
RETUR N

30 SAVE=A(1)
K: N
DO 31 T19N
L=N
00 92 J=IpN

IK(K-1)*NIJIM.K
X(IK) :0.
IFCL*E~oK)X(lK)=A(L)

V3? L=L-1

S( 1) =SAVE
RETUR N
END)
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SURR)UTINF 914NV 74,/74 OPT1l -TS1 4.8+518

I ~ SUF3ROUTINE GMINV(NRNCpAU,49RvMT)
LCIT4ENSION A(iE),U(16)
CoM4Ot'JMAIf~l/NnIM,qNDlIvS(i5)
C01P40N/I NOUI/NOT

5 T0L~1.E-12
MRNC
N,9i =NR- I
Tr)Li= 19E-2t

FAC~flOT(NR A (JJ),A (JJ))

JRM:J J .1i

iC4=J J+JMI

Ir (Je EO1) Go TO 54.
KK~i

24: 00 3.: K=19JM1
TF7(S (K).EQ~iot) GO TO 30
TCMlP= -DOT (NFA MJ) ,A ((K))
CALL VADD(KTE'4PgU(JJ)iU(KK))

3 q KK=KK*NDIM
25 00 5;) L=192

KK1l
Do 53 K=IJMI
1I7( 3 (K)9EQ * b 9) GO TO0 5 a
rEMP=-r)Or(NRgA(JJ) ,A (1K))

3% CALL VADD(NPTEMPACJJ),A(K())
CALL %AODKTEMPvU(JJ)qU(KK))

31 KK=KK+NDIM
TOLI=TOL' FAC
F AC=O0OT(0.1RA (JJ) , A(JJ))

35 34 JF(FAC.GTsTOL1)GO TO 7L,
00 55 I=JJJRM

S5 A(M o.
S (J) I.

4 00 55 K=IvJMI
IM(S(k()oEQ*D*)GO TO 65
TEMP= -DOT (KU(KK) ,U( JJl
CALL VADD(NRvTEMP9ACJJ~ ,A(1(U

55 KK=KK+NDIM
45 FAC.OOT(JvU(JJ)fU(JJ1 )

MQ,=MR -i
GO TO 75

71 S (J) =1.L

5% DO 72 K=1,JMI
IF(SCK)oEQo1)GO TO 72
TEM10u-0OT(NRA(JJ)VA(KK))
CALL VADO(KgTEMPtU(JJ),U(KK))

575? FACz1./SORT(FAC)
nnf 80 IzJJJRN

$1 A(I) AMI)*FAC 96



sur-,kuTrNE CATrNv 7do / 7 OPT=1 FTN 4*8+5318

00 85 I=JJJCM

6; -)t JJ=JJ4NOIM
IFANREONR.OR.MR.Er),NC)GO TO 12:
TF(MT *NE.6)WRITE(NOT9i11) NRNCIIR

tin FORMA T(13 jlHXq12 98H M RAN'(v12)
? N NI-NC*N0IM

by JJji
00 135 JiNC
DO 12r, I=IPNR

S (I ) 0.
DO 12S KK=JJNENDNDIM

IT=J
00 133 I~iNR
U ( TT) = S (I)

13 5 J JJJ 4NDIM1
RETUR N
END

SURR)UTINF VA'10 74/74 OPT=I FT4 4. 8+518

I S119ROIJTINE VADD(NCiAB)
DTIENSION A(i5),8 (15)
00 1 11,qN

R17TUR N
E4J0

SUBR)UTINE XD()T 74/74 DPT1l FT4 'i*8+518

1 S08tROUTINE XOOT(TIYYP)
DT4SENSION Y(2C),VP(2D)
COMMION Z9(26922,)
L123

5 .40=20
NO=I

113=20
IC=2 1

It CALL VMULFF(Z9,YLlMONO1T,,I3,Y',I-OIERI
RETUR N
END
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